Research / Research Highlights

Research Highlights

Research Highlights /

Research Highlights

Prof. Yong-il Shin

Universal Kibble-Zurek scaling in an atomic Fermi superfluid

The Kibble–Zurek mechanism is a theoretical framework that describes the formation and scaling of topological defects in symmetry-breaking phase transitions. It was originally conceptualized for superfluid helium. The theory predicts that the number of quantum vortices should scale as a power law with the rate at which the system passes through the lambda transition, but demonstrating this effect has been elusive in experiments using superfluid systems. Here, we report the observation of Kibble–Zurek scaling in a homogeneous, strongly interacting Fermi gas undergoing a superfluid phase transition. We investigate the superfluid transition using temperature and interaction strength as two distinct control parameters. The microscopic physics of condensate formation is markedly different for the two quench parameters, as shown by the two orders of magnitude difference in the condensate formation timescale. However, regardless of the thermodynamic direction in which the system passes through a phase transition, the Kibble–Zurek exponent is identically observed to be about 0.68, in good agreement with theoretical predictions. This work experimentally demonstrates the theoretical proposal laid out for liquid helium, which is in the same universality class as strongly interacting Fermi gases.

more >> https://www.nature.com/articles/s41567-024-02592-z